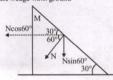
QUES 01

A block of mass m slides on the wooden wedge, which in turn slides backward on the horizontal surface. The acceleration of the block with respect to the wedge is: Given m = 8 kg, M = 16 kg.

Assume all the surfaces shown in the figure to be frictionless. [Sep. 1, 2021 (II)]

30°


(b)
$$\frac{6}{5}$$
 g

(c)
$$\frac{3}{5}$$
g

(d)
$$\frac{2}{3}$$
g

(d) Let a_w be the acceleration of wedge and a_b be the acceleration of block w.r.t wedge

For the wedge w.r.t. ground

$$N \cos 60^\circ = Ma_w \Rightarrow N \times \frac{1}{2} = 16 a_w$$

 $\Rightarrow N = 32a_w$...(i)

$$\Rightarrow$$
 N = 32a_w

For block w.r.t. wedge maw sin 30° Pseudo force = maw mgsin30°+ma_wcos30°

Balancing vertical forces $N + ma_w \sin 30^\circ = mg \cos 30^\circ$

$$\Rightarrow N = 8g \cos 30^{\circ} - 8a_{w} \sin 30^{\circ}$$

$$\Rightarrow 32a_w = 4\sqrt{3g} - 4a_w \quad \text{(Using (i))}$$

$$\Rightarrow a_{w} = \frac{\sqrt{3}}{9}g$$
Along incline plane

Along incline plane \Rightarrow m gsin30° + ma_wcos30° = ma_b = 8a_b

$$\Rightarrow a_b = \frac{8 \times g \times \frac{1}{2} + 8 \times \frac{\sqrt{3}}{9} \times g \cdot \frac{\sqrt{3}}{2}}{8}$$

$$\Rightarrow a_b = g \times \frac{1}{2} + \frac{\sqrt{3}}{9} g \cdot \frac{\sqrt{3}}{2} = \frac{2g}{3}$$